pertemuan & perpotongan dua buah garis

[draft]

example case (1)

2015-11-08 02_08_40-Microsoft Excel Starter - intersection_line

2015-11-08 02_08_59-Microsoft Excel Starter - intersection_line

2015-11-08 02_09_19-Microsoft Excel Starter - intersection_line

example case (2)

2015-11-08 02_06_12-Microsoft Excel Starter - intersection_line

2015-11-08 02_06_58-Microsoft Excel Starter - intersection_line

2015-11-08 02_05_30-Microsoft Excel Starter - intersection_line

example case (3)

2015-11-08 02_12_00-Microsoft Excel Starter - intersection_line

example case (4)

2015-11-08 02_27_53-Microsoft Excel Starter - intersection_line

example case (5)

2015-11-08 02_03_55-Microsoft Excel Starter - intersection_line

example case (6)

2015-11-08 12_57_50-Microsoft Excel Starter - intersection_line

example case (7)

2015-11-08 11_23_45-Microsoft Excel Starter - intersection_line

example case (8)

2015-11-08 12_54_19-Microsoft Excel Starter - intersection_line

metode perhitungan atau algoritma terlihat stabil pada masalah pertemuan dua garis dalam bidang yg sama. pada masalah dua garis yg berpotongan akan ditemukan titik tersebut, sedangkan jika dua garis tersebut tidak berpotongan maka akan ditemukan titik perpotongannya dgn prinsip pararel extension line dari salah satu atau kedu garis tersebut.

to be added,

  • more test case for algorithm validation
  • split both line and make new four line
  • multi line intersection to create new split lines
  • trim and make further deleting of shortest line
  • joining both lines at intersection point to make extent by creating new lines
  • create third line perpendicular to second line based on first and second point
  • slope planes (?) three dimensional (space) case, can be possible using determinant of matrix methods
  • temporary construction line by tracking locks, both polar (angle steps) & parallel

2015-11-08 03_48_40-Untitled 1 - OpenOffice Draw

One thought on “pertemuan & perpotongan dua buah garis

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s